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 abstract. We have studied~one-hole dynamics in a quantum antiferromagnet by use of the 
anisotropic three-dimensional !-I model in the simple cubic lattice within the self-consistent 
Bom approximation. The hole spectral function. the density of states. the quasiparticle dispersion 
relationship, tk effective e s ,  the quasiparticle specVal weight, and the incoherent multiple 
spin-wave background are determined as functioni of the Heisenberg exchange and hopping 
amplitude in the thermodynamic limit. 

Hole motion in the two-dimensional (2D) t-J model has been intensively studied during 
recent years. This is because this model is believed [l] to contain the low-energy physics of 
the high-T, cuprate materials. As a first, but important step, one hole in the spin background 
has been first considered by Schmitt-Rink and co-workers 121 as well as Kane and co-worker 
[3]. Further investigations and simulations on small ZD clusters have been performed to 
extract information in the thermodynamic limits (see, for example [4-71). It is now clear 
that the spectral function of one hole in the 2D antiferromagnet consists of a quasiparticle 
peak followed by a broad incoherent background which reflects real multiple spin-wave 
processes accompanying hole motion. The lowest-energy quasiparticle state has momentum 
k = ( I I / ~ ,  11/21, 

In this paper, we present our study of one-hole motion in the quantum antifemmagnet by 
use of the anisotropic three-dimensional (A3D) t-J model in the simple cubic lattice within 
the self-consistent Born approximation. The reason that motivates us is that experiments [SI 
indicate that interactions between the CuOz planes are not trivial and may play an important 
role in determining the superconducting transition temperature [9]. Furthermore, the results 
previously obtained [2-71 in the t-J model depend on the dimensionality. In the A3D t-J 
model, we consider the hopping amplitude I and the Heisenberg exchange J in the x y  
plane. They are t l  and JL in the z direction with values from zero to t and from zero to 
.I, respectively. Calculations are performed by use of an iterative technique and the special 
integration method in the Brillouin zone [lo]. 

Let us begin with the A3D t -J  model in the simple cubic lattice, 

H = - tijc;$cj,, + JijSi . Sj (1) 
l ido (id 

where cio is the projected electron operator with spin U at site i, a g  into account that 
double occupancy of sites is not allowed, and Si is the electron spin operator. Here (i, j )  
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indicates sum over pairs of nearest neighbours, and t; j  = t ,  Jjj = J for the nearest- 
neighbouring i ,  j in the xy plane and t ; j  = t l ,  Jij = JI for the nearest-neighbouring i, j in 
the z direction. Both g = J l / J  and 6 = t l / t  are between zero and unity with S. = g = 0 
corresponding to the ZD t-J model. 

Following Kane and co-workers [3], we express the projected electron operators in  the 

track of the spins, and the slave fermion fi annihilates a hole state at site i .  The operators 
b;, and fi are subject to the constraint that j$f; + C,bl,,bi, = 1 on each site. Through the 
same procedure as used in 131, the NieI-ordered state can be considered as a condensate 
of bl;l(bzj+) Bose fields in a l(2) sublattice and uncondensed bosons bli t (bzj~)  turn into 
spin-wave excitation operators in the N&l background. Replacing bl i~ .  and b2jt by 
and absorbing 
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'slave fermion' representation, cie t -+ fib!<, where the Schwinger boson operator b;, keeps 

into tij, we can obtain the effective Hamiltonian [2,3], 

The HJ can be diagonalized by Fourier and Bogliubov transformation, 

where Uk = ([(l - y:)-'/' + 1]/2]'/' and U& = -sgn(yk)([(l - y:)-'/' - 1]/2]'p with 
yk = Z[cosk, + cosky + g cosk,]/z and z = 4 + 2g. The spin wave dispersion is 

= ZJ[1 - Yf]'". 
The Hamiltonian then reads 

where P(k, 4) = (t lk-yUq + % U q )  and Q(k,  4) = (Da-qUy  + t lkUq) with l k  =  COS^, 4- 
cos ky + 6 cos kJzl and z i  = 4 t 26. The first term in equation (7) indicates the coupling 
term between hole and spin waves and the second term is the spin background under the 
linear spin-wave approximation [2,3,6]; 

The onehole retarded Green's function is defined as 

G(k, o) = ( O O [ f k [ w  - H + i O + ] - ' ~ [ O O )  (8) 
where 100) represents the vacuum state of hole and spin waves. One can easily obtain the 
equation [ 111 
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where Go@, o) = [w +io+]-'. In the self-consistent Born approximation, we obtain the 
two integral equations 

G(k ,  w )  = Go(k, o) + Go(k, o ) E ( k ,  o )G(k ,  w )  (10) 

(11) 

As usual the hole spectral function is 

A(k,  w )  = - Im G(k, w + iof). (12) 

The self-consistent equations (10) and (11) are solved numerically using the iteration 
technique. In this paper, we always fix t = 1 eV as the energy unit. To make the iteration 
procedure stable, an artificial broadening parameter E << t is introduced [4-71. The iteration 
is carried out until the needed convergence is achieved. We employ the integration method 
developed by Chadi and Cohen [IO]. The method is to determine a set of special wave- 
vector points in the Brillouin zone which is the most efficient for pluposes of accurately 
calculation the averages of a periodic function over the Brillouin zone. 

In general, the integrand in (11) does not have the symmetries of (kx, ky,k,) tf 
(kz, ky, k x )  and (kx ,  k,, k,) cf (kx,  k,, ky). A set of 40 special points [IO] in the irreducible 
3D Brillouin zone (kr > ky > 0, kz > 0) are used. Due to the symmetries of the Green 
function, the calculation,can be limited to the irrednciblepart of the Brillouin zone [6]. This 
irreducible part can be extended to the rest of the zone by use of a symmetry operation. 

First we calculate the hole spectral function and other properties in the 2D case, i.e., 
8 = g = 0. We have reproduced all the results of Marsiglio and co-workers [6]. For 
example, the solid line in figure I(a) is the hole spectral function at k = (x/Z, n/Z) with 
J = 0.1. This is the same as figure 5(a) in [6]. 

The density of states D(w) is defined as 

~ 

~ 

The solid line in figure l(b) shows D(w) in the 2D case with J = 0.1. 
The quasiparticle energy Ek is obtained by solving the self-consistent equation 

Ek = Re Z ( k ,  Ek) (14) 

while Im C ( k ,  ck) must vanish [Z-71. The quasiparticle spectral weight Zk is 

z k =  [ 1 -  "ReZ(k,w)]-'I 

am (U-t 

Since a finite E is needed in the calculation, the calculated valued of ck, Im Z ( k ,  +) and Zk 
are influenced by the choice of E .  In the 2D case for J =~0.1 with E = 0.01, 0.005, and 
0.0025, the calculated values of 6k  fork = (nj2, x/2) are -2.5287, -2.5291, and -2.5293, 
for respective values of E .  The values of Zk are 23.19, 23.23, and 23.25%, respectively. 
The quasiparticle dispersion relationship is also calculated. The values of Ek fork = (K, 0) 
and k = (0,CI) are ,2.4404 and -2.0862 respectively. Our results are almost the same as 
the results of the thermodynamic limits of Marsiglio and co-workers [6]. These results are 
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Figure 1. (a) Hole specwl function for the ZD I-J model with J = O.lf at k = ( ~ 1 2 .  n/2)  (the 
solid line) and for the A ~ D  case at k = (7112. ~ 1 2 . 0 )  with J = 0.1r. 6 = 0.5, and g = 0.005 
(the dashed line). (b) The density of states for the ZD case with J = Olt (the solid line) and for 
the A3D case with J = 0.k. 6 = 0.5, and g = 0.005 (the dashed line). 

also in general agreement with exact 4 x 4 cluster results of Dagotto and co-workers [5] 
and recent results of Barnes and co-workers [7]. 

Next we treat the M D  cases. We find that the quasiparticle picture still holds in the whole 
range of S(S = t l j f )  and g(g = J J J )  (both 6 and g range from zero to unity). At each 
momentum, the hole spectral function consists of a quasiparticle peak and~broad incoherent 
background due to the  multiple^ spin-wave excitation. For example, the dashed line in 
figure l(a) shows the hole spectral function at k = (H/2, a/2,0) for J = 0.1, g = 0.005, 
and 8 = 0.5. The corresponding density of states is shown in figure l(b) (the dashed 
line). The quasi-two-dimensiond (QZD) case, where f l  and JI are small, is experimentally 
the most interesting, since the high-T, materials are the layered copper oxide compounds. 
We find that for g i 0.03, the spectral weight and the peak height of the quasiparticle 
are smaller than those in the exact ZD case. Correspondingly, the spectral weight of the 
incoherent multiple spin-wave background and its energy extension range become larger 
than those in the exact 2D case. 

We have calculated the quasiparticle dispersion along the symmetry direction for 
J = 0.1 with various sets of 6 and g. The momenta corresponding to the quasi- 
particle states determine the excitation properties of the quasiparticles and the lowest-energy 
quasiparticle state determines the hole ground state. In the exact 2D cases, the lowest- 
energy quasiparticle state locates at k = (7r /2 ,1~/2)  r2-71. In A3D cases, our calculations 
show that the lowest-energy quasiparticle state has momentum either at k = (n/2,  r / Z ,  0), 
or k = ( ~ 1 2 ,  n/2, a/2), depending on the parameters of the models. For illustration, 
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Figure 2. (a) Quasipalride dispersion dong the symmetry directions in the A3D cases for 
J = 0.11 with 6 = 0.25 "d fi = 0.005 (the solid line) and with 6 = g = 0.5 (the dashed 
line). Here M, S and X represent the momentum at k = (z, 40). k = (nj2.  nj2, O), and 
k = (n/Z. nj2,  ~1'2). respectively. (b) The 'momentum of the lowest-energy quasiparticle state 
as a function of the set of S and g. In the wedge marked S, it has momentum k = (nj2, nj2.0). 
In the wedge marked X ,  it has k = (?r/2,n/2. nl2). In the range of 6 < 0.01 and g < 0.01, 
the quasiparticle states at these two momenta are degeneme. 

figure 2(a) shows the results for S = 0.25 with g = 0.005 (the solid line) and for 
S = 0.5 with g = 0.5 (the dashed line). The lowest-energy quasiparticle state, €,,,in, 
has momentum k = (7112; n /2?  n/2) or k = (n/2,11/2,0), depending on the values of 6 
and g. In figure 2(b), a critical line exists in the 6-g diagram on which the quasiparticle 
states are degenerate at these two momenta. Above the critical line, €,,,in has momentum 
k = (n /2 .n /2 ,0 )  while it has momentum k = ( r r j 2 , ~ / 2 , n / 2 )  below this line. For 
g 2 0.26, &,in has momentum k = ($12, n / 2 ,  ~ / 2 )  in he  whole range of S from zero to 
unity. For S < 0.01 and g < 0.01, they are degenerate. In the low-density hole doping 
limits of experimental interest, g Tr 0.005 and fl 20 K, hence in this case they are 
degenerate. 

The effective mass m* can be obtained from ex, 

Figure 3 shows that the inverse effective mass at the bottom of the band along the z- 
direction, l,";, as a function of g for the cases with J = 0.11 and several values of t l .  
In general, for the cases with g~fixed, the larger t l  is, the larger 1,"; is. For the cases 
with the set of 6 and g on the critical line in figure 2(b), m: is infinity. Fixing 21, as g 
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Figure 3. The inverse of the quasiparticle effective mass at the bottom of the band along the 
z-direcfion as a function of J l / J  in themes with J = 0.11 and various values of I I .  

increases, the value of l/m: first decreases when 6 ~ "  has momentum k = (71/2, n/2,0) 
and then increases when <,,.in has k = (71/2, n/2, n/2). 

In the exact ZD cases, a number of papers has been devoted to studying the dependence 
of the quasiparticle properties on the values o f t  and J. However, those results are limited 
to 2D. It is important to study the influence of the anisot-opic structure of A3D cases on the 
quasiparticle properties, that is, to study the dependence of the quasiparticle properties on 
the values of 6 and g with fixed in-plane values o f t  and J. This is because even in the 
zero-temperature limit, the A30 cases are closer to the real physical object of the layered 
copper oxide compounds than the exact 2D cases. Let J be fixed to be 0.1. We find that 
fixing g (in the whole range from zero to unity), with increasing 8, the spectral weight zk 
and the peak height of  the quasiparticle decrease. On the other hand, fixing 6 (in the whole 
range from zero to unity), with increasing g, the spectral weight zp  and the peak height 
increase. Figure 4 shows zx and - Im C ( k ,  ~ k )  of the quasiparticle at k = (n/2. n/Z, 0) as 
functions of S for g =~0.05 (figure 4(a)) and as functions of g for S = 0.2 (figure 40)) (the 
value of 6 is 0.005 in both cases). In the cases shown in figure 4(a), one can see that as 
S goes from zero to unity, the spectral weight zk decreases from 24.26 to 14.75% and the 
peak height, which is [-Im C ( k ,  e y ) ] - ' ,  decreases from 48.92 to 29.76 (in units of t-I). In 
the case shown in figure 4(b), as g goes from zero to unity, the spectral weight zk increases 
from 22.93 to 28.75% and the peak height increases from 46.21 to 57.92. The reason that 
a profound quasiparticle peak exists in the whole range of S and g is that there is a small 
density of states of low-lying spin excitations. The broad incoherent structure reflects the 
real multiple spin-wave processes accompanying hole motion. As discussed in [6], the 
quantum antiferromagnet treats the spin ground state as a linear combination of the N6el 
state and states with multiple zero-point spin deviations. When the hole hops, it also creates 
spin deviations. Hence, the spin configuration, after one hole hop, has a finite overlap with 
the configuration prior to the hop. This leads to Bloch-like propagation. The quasiparticle 
spectral weight is proportional to this overlap. Thus consider the A3D cases with J held 
constant. Fixing Jl and increasing i ~ .  the overlap between the spin configuration after and 
prior to a hop decreases. Fixing t l  and increasing JI, the overlap increases. In the QZD 
case with small t l  and JL, the overlap is smaller than that in the 20 case. 
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Figure 4. For the quasiparticle at k = (n/2, a/2, a), !he spectml weight zt and - Im Z(ki  a) 
(a) as functions of 6 with 8 = 0.05 and (b) as functions of g with 6 = 0.2. In each figure, the 
solid line repments LX (the left-hand scale) and the dashed line represents -ImE(k. a) (the 
right-hand scale). 

In conclusion, we have studied one-hole dynamics in the A3D t-J model within the 
self-consistent Born approximation. Hole spectra, the density of states, the quasiparticle 
spectral weight, the dispersion relationship, the effective mass, and the incoherent multiple 
spin-wave background are determined as functions of f l  and JA by use of an iterative 
technique. The lowest-energy quasiparticle state has momentnm Lither at k = ( ~ 1 2 ,  n/2,0), 
or k = (n/2, x/2, x/2),  depending on the parameters of the models. The behaviour of the 
effective mass along the z direction is also different depending on where emin locates. 
Holding J constant, fixing J l ( f J  and increasing t i ( J ~ ) ,  the spectral weight and the peak 
height of the quasiparticle decrease (increase). It is important to note that in the QZD case, 
the spectral weight and the peak height of the quasiparticle are smaller than those in the 
exact ?D case. Correspondingly. the spectral weight of the incoherent multiple spin-wave 
background and its energy extension range become larger than those in the exact ZD case. 
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